Autologous Stem Cell Transplantation in Multiple Myeloma

Optimal Frontline Therapy and Maintenance Therapy

Donna E. Reece, M.D.
Princess Margaret Hospital
Toronto, ON CANADA
10 December 2011
ASCT in Myeloma

...... Where we were..

- **Induction**
 - VAD
 - Dexamethasone alone
 - Dexamethasone + thalidomide

- **Stem cell mobilization/collection**

- **High-dose melphalan + ASCT**

Outcomes

- Overall response rate: 80%
- CR/nCR rate: 20%
- Median PFS: 20-28 mos
- Median overall survival: 48-60 mos
Components of ASCT

- **INDUCTION**
- Stem cell mobilization/collection
- **High-dose therapy + ASCT**
- **CONSOLIDATION**
- **Maintenance Therapy**

Potential integration of novel agents
Considerations

- Many trials include pre- and post-ASCT therapy that may influence PFS/OS independently
 - Induction
 - High-dose therapy
 - Maintenance
- ASCT outcomes are influenced by biological factors
 - International Staging System
 - FISH cytogenetics
 - GEP
 - Other factors (LDH, plasma cell leukemia)
- Time of randomization
 - Before induction
 - After ASCT
 - Potentially selects better patients as ~ 15% have high-risk disease
Survival after ASCT by FISH at PMH (N=126)

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>N (%)</th>
<th>Median OS (months)</th>
<th>Relative Risk (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p53 del</td>
<td>10 (8%)</td>
<td>14.7</td>
<td>4.5 (1.5-13.1)</td>
<td>0.0025</td>
</tr>
<tr>
<td>t(4:14)</td>
<td>15 (12%)</td>
<td>18.3</td>
<td>4.8 (1.8-12.7)</td>
<td>0.0005</td>
</tr>
<tr>
<td>t(11:14)</td>
<td>16 (13%)</td>
<td>37.2</td>
<td>1.5 (0.5-4.8)</td>
<td>0.5231</td>
</tr>
<tr>
<td>13q del</td>
<td>39 (31%)</td>
<td>34.4</td>
<td>2.3 (1.0-5.2)</td>
<td>0.0498</td>
</tr>
<tr>
<td>None</td>
<td>43 (34%)</td>
<td>NYR</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Chang et al. Bone Marrow Transplant 2005;36:793-796. NYR=not yet reached
Hypothesis:

Since patients in CR or nCR after ASCT have better outcomes, achievement of a deep response before ASCT should confer even better results.

Depth of response usually correlates with PFS and OS
Pre-ASCT Induction Therapy

Phase III Trials

- **Novel regimen vs VAD**
 - *HOVON-50*: **TAD** vs **VAD**
 - *IFM 2005-02*: **BD** vs **VAD**
 - *HOVON 65/GMMG-HD4*: **PAD** vs **VAD**
 - *MRC IX*: **CTD** vs **CVAD**

- **Novel regimen versus thalidomide + dexamethasone**
 - *GIMEMA MMY-3006*: **VTD** vs **thal + dex**
 - *PETHEMA*: **VTD** vs **VBCMP/VBAD/Vel** vs **thal + dex**

- **Novel regimen vs novel regimen**
 - *IFM 2007-02*: **vTD** vs **BD**
Summary of Phase III ASCT Trials

<table>
<thead>
<tr>
<th>Study/Author</th>
<th>N</th>
<th>Induction regimen</th>
<th># ASCT</th>
<th>Consolidation</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVON-50 Lokhorst</td>
<td>536</td>
<td>TAD, VAD</td>
<td>1</td>
<td>--</td>
<td>Thal</td>
</tr>
<tr>
<td>MRC IX Morgan</td>
<td>1111</td>
<td>CTD, CVAD</td>
<td>1</td>
<td>--</td>
<td>+/- thal</td>
</tr>
<tr>
<td>IFM 2005-02 Harousseau</td>
<td>482</td>
<td>BD, VAD</td>
<td>1 or 2</td>
<td>+/- len</td>
<td>+/- len in some</td>
</tr>
<tr>
<td>HOVON 65/GMMG-HD4 Sonneveld</td>
<td>613</td>
<td>PAD, VAD</td>
<td>1 or 2</td>
<td>--</td>
<td>B 1.3 mg/m²</td>
</tr>
<tr>
<td>GIMEMA MMY-3006 Cavo</td>
<td>447</td>
<td>VTD, Thal + dex</td>
<td>2</td>
<td>VTD</td>
<td>Dex</td>
</tr>
<tr>
<td>PETHEMA/GEM Rosinol</td>
<td>306</td>
<td>Thal + dex, VTD, VBMCP/VBAD/Vel</td>
<td>1</td>
<td>--</td>
<td>IFN-α2b vs Thal vs Thal + B</td>
</tr>
<tr>
<td>IFM 2007-02 Moreau</td>
<td>199</td>
<td>BD, vTD</td>
<td>1 or 2</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Post Induction Results in Phase III Trials

<table>
<thead>
<tr>
<th>Study/Author</th>
<th>N</th>
<th>Induction regimen</th>
<th>Overall response rate (%)</th>
<th>≥VGPR (%)</th>
<th>CR/nCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVON-50 Lokhorst</td>
<td>556</td>
<td>TAD VAD</td>
<td>71 / 57</td>
<td>37 / 18</td>
<td>3 / 2</td>
</tr>
<tr>
<td>MRC IX Morgan</td>
<td>1111</td>
<td>CTD CVAD</td>
<td>82 / 71</td>
<td>33 / 27</td>
<td>13 / 8</td>
</tr>
<tr>
<td>IFM 2005-02 Harousseau</td>
<td>482</td>
<td>BD VAD</td>
<td>78 / 63</td>
<td>38 / 15</td>
<td>15 / 6</td>
</tr>
<tr>
<td>HOVON 65/GMMG-HD4 Sonneveld</td>
<td>613</td>
<td>PAD VAD</td>
<td>83 / 59</td>
<td>42 / 11</td>
<td>15 / 5</td>
</tr>
<tr>
<td>GIMEMA MMY-3006 Cavo</td>
<td>447</td>
<td>VTD Thal + dex</td>
<td>93 / 79</td>
<td>62 / 28</td>
<td>31 / 11</td>
</tr>
<tr>
<td>PETHEMA/GEM Rosinol</td>
<td>386</td>
<td>VTD Thal + dex VBMCP/VBAD/B</td>
<td>82 / 75</td>
<td>60 / 36</td>
<td>35 / 22</td>
</tr>
<tr>
<td>IFM 2007-02 Moreau</td>
<td>199</td>
<td>vTD BD</td>
<td>88 / 81</td>
<td>49 / 36</td>
<td>31 / 22</td>
</tr>
</tbody>
</table>
Post-ASCT Results in Phase III Trials

<table>
<thead>
<tr>
<th>Study/Author</th>
<th>Induction regimen</th>
<th>Overall response rate after ASCT (%)</th>
<th>≥VGPR (%)</th>
<th>CR/nCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVON-50 Lokhorst</td>
<td>TAD VAD</td>
<td>84 (76)</td>
<td>54 (44)</td>
<td>14 (12)</td>
</tr>
<tr>
<td>MRC IX Morgan</td>
<td>CTD CVAD</td>
<td>91 (90)</td>
<td>84 (62)</td>
<td>50 (37)</td>
</tr>
<tr>
<td>IFM 2005-02 Harousseau</td>
<td>BD VAD</td>
<td>80 (77)</td>
<td>54 (68*)</td>
<td>35 (39*)</td>
</tr>
<tr>
<td>HOVON 65/GMMG-HD4 Sonneveld</td>
<td>PAD VAD</td>
<td>--</td>
<td>61 (36)</td>
<td>30 (15)</td>
</tr>
<tr>
<td>GIMEMA MMY-3006 Cavo</td>
<td>VTD Thal + dex</td>
<td>93 (93*) (84*)</td>
<td>62 (82*)</td>
<td>31 (55*)</td>
</tr>
<tr>
<td>PETHEMA65 Rosinol</td>
<td>VTD Thal + dex</td>
<td>77 (58)</td>
<td>60 (29)</td>
<td>46+ (24+)</td>
</tr>
<tr>
<td></td>
<td>VBMCP/VBAD/B</td>
<td>73</td>
<td>58 (36)</td>
<td>46+ (38+)</td>
</tr>
<tr>
<td>IFM 2007-02 Moreau</td>
<td>nTD BD</td>
<td>89 (86)</td>
<td>58 (74)</td>
<td>61 (52)</td>
</tr>
</tbody>
</table>

*After 2 transplants. If performed *IF negative CR
Do Novel Induction Regimens Confer Better PFS/OS?

<table>
<thead>
<tr>
<th>Study/Author</th>
<th>Induction regimen</th>
<th>Median PFS (mos)</th>
<th>3 year PFS (%)</th>
<th>Median OS (mos)</th>
<th>3-year OS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOVON-50 Lokhorst</td>
<td>TAD VAD</td>
<td>34 (25)</td>
<td>--</td>
<td>73 (60)</td>
<td>--</td>
</tr>
<tr>
<td>MRC IX Morgan</td>
<td>CTD CVAD</td>
<td>27 (25)</td>
<td>--</td>
<td>NYR (63)</td>
<td>--</td>
</tr>
<tr>
<td>IFM 2005-02 Harousseau</td>
<td>BD VAD</td>
<td>36 (30)</td>
<td>--</td>
<td>--</td>
<td>81% (77%)</td>
</tr>
<tr>
<td>HOVON 65/GMMG-D4 Sonneveld</td>
<td>PAD VAD</td>
<td>~34 (~24)</td>
<td>48% (42%)</td>
<td>--</td>
<td>78% (71%)</td>
</tr>
<tr>
<td>GIMEMA MMY-3006 Cavo</td>
<td>VTD Thal + dex</td>
<td>NYR NYR</td>
<td>68% (56%)</td>
<td>--</td>
<td>86% (84%)</td>
</tr>
<tr>
<td>PETHEMA/GEM Rosinol</td>
<td>VTD Thal + dex VBMCP/VBAD/B</td>
<td>NYR</td>
<td>--</td>
<td>--</td>
<td>~80% (~80%)</td>
</tr>
<tr>
<td>IFM 2007-02 Moreau</td>
<td>vTD BD</td>
<td>26 (30)</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Other Induction Regimens

- Many other phase I-II trials of 3- and 4-drug regimens
 - *ASCT not mandated in many studies*
 - *Examples:*
 - RVD (lenalidomide + bortezomib + dex)
 - RAD (lenalidomide + doxorubicin + dex)
 - CyBorD (weekly oral cyclophosphamide + bortezomib + dex)
 - EVOLUTION (CVD with intravenous cyclophosphamide +/- lenalidomide)
 - RVDD (lenalidomide + bortezomib + pegylated liposomal doxorubicin)
- RVD regimen selected for subsequent phase III trials
 - *Dana Farber/IFM trial of early vs delayed ASCT*
 - *CTN trial evaluating post-ASCT approaches*
 - *SWOG S0777 study of induction with lenalidomide + dex vs RVD, followed by len + dex until progression*
3- and 4-drug Bortezomib-based Induction Trials

<table>
<thead>
<tr>
<th>Regimen</th>
<th>N</th>
<th>N With ASCT</th>
<th>Response (%) Post-induction</th>
<th>Response Post-ASCT</th>
<th>PFS (mos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥PR</td>
<td>≥VGPR</td>
<td>≥CR/CR</td>
</tr>
<tr>
<td>VDD¹</td>
<td>30</td>
<td>20</td>
<td>93</td>
<td>63</td>
<td>40</td>
</tr>
<tr>
<td>RVD²</td>
<td>66</td>
<td>28</td>
<td>100</td>
<td>67</td>
<td>40</td>
</tr>
<tr>
<td>RVDD³</td>
<td>68</td>
<td>24</td>
<td>96</td>
<td>58</td>
<td>30</td>
</tr>
<tr>
<td>VDR⁴</td>
<td>42</td>
<td>6</td>
<td>90</td>
<td>55</td>
<td>22</td>
</tr>
<tr>
<td>VDC⁴</td>
<td>31</td>
<td>5</td>
<td>87</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>VDCR⁴</td>
<td>33</td>
<td>3</td>
<td>94</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td>VTDC⁵</td>
<td>48</td>
<td>27</td>
<td>96</td>
<td>--</td>
<td>44</td>
</tr>
<tr>
<td>VCD⁶</td>
<td>300</td>
<td>--</td>
<td>84</td>
<td>--</td>
<td>10</td>
</tr>
<tr>
<td>CyBor-D⁷</td>
<td>30</td>
<td>30</td>
<td>93</td>
<td>60</td>
<td>48</td>
</tr>
</tbody>
</table>

Induction with Lenalidomide + Dex

- E4A03: Lenalidomide + low-dose or high-dose dex1
 - *High overall response rate after 4 cycles (68%-79%)*
 - *Oral regimen; excellent tolerance with weekly dex*
 - Stem cell collection issues can be addressed with optimal mobilization approaches
 - *Therapy after 4 cycles not mandated → bias for ASCT outcomes*

- What can be expected if **all** patients go to ASCT?

1Rajkumar SV et al. Lancet Oncol 2010; 11: 29 - 37
Phase III Trial: MPR vs ASCT in Patients <65 Years of Age (N=402)

New Myeloma Pt Stratified by age and ISS

Len + dex x 4 cycles

CY + G-CSF mobilization

MPR x 6 cycles

N=202

N=200

Melphalan 200 mg/m² + ASCT x 2

25% CR; 60% >VGPR
2-year PFS 75%
2-year OS 97%
Regimens incorporating novel agents produce high remission rates before ASCT
- Unprecedented CR, nCR and VGPR rates.
- Toxicity is acceptable
- Stem cell procurement not significantly compromised

In general, highest response rates seen with 3-drug regimens containing bortezomib + IMiD

Remission rates increase further post-ASCT and are better than those seen with older regimens
Induction Regimens—Summary (2)

- Although it is difficult to isolate the effect of induction per se, post-transplant PFS is usually ~3 years with modern frontline therapy.

- Our PMH policy is to use weekly CyBorD (bortezomib 1.5 mg/m²/week + p.o. cyclophosphamide 300 mg/m²/week + dex) for 4 cycles¹
 - No significant neuropathy or myelosuppression
 - Cost advantages

Definitions of Post-ASCT Therapy

- **Maintenance therapy**—any treatment administered after the completion of induction therapy in patients whose disease is either responsive or non-progressive, with the goal of prolonging survival\(^1\)
 - *Steroids*
 - *Interferon-alpha*
 - *IMiDs (thalidomide, lenalidomide)*
 - *Bortezomib*

- **Consolidation therapy**—relatively intensive short-term post-ASCT therapy
 - *Total therapy programs (DPACE\(^2\), VTDPACE\(^3\), VRD\(^3\))*
 - *VTD=bortezomib + thalidomide + dex*
 - *RVD=lenalidomide + bortezomib + dex*
 - *Lenalidomide alone*
 - *Bortezomib alone*

Post-ASCT Maintenance Therapy

Phase III Trials

- **Thalidomide**—7 trials
 - *NCIC results from MY.10 presented at ASH 2010*
 - *MRC IX results just published*
- **Bortezomib**
 - *HOVON MM 65/GMMG-HD4*
 - *Nordic Myeloma Study Group trial--ongoing*
- **Lenalidomide**—2 trials
 - *IFM 2005-02 with lenalidomide consolidation + maintenance*
 - *CALBG 100104 trial*

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Thalidomide dose (mg)/duration</th>
<th>PFS/ EFS</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attal/2006</td>
<td>597</td>
<td>Thal 200 (median dose) vs obs/progression</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Spencer/2006</td>
<td>243</td>
<td>Thal 200 + pred vs pred/12 months</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Maiolino/2008</td>
<td>212</td>
<td>Thal 200 + dex vs dex/12 months</td>
<td>+</td>
<td>NS</td>
</tr>
<tr>
<td>Barlogie/2006*</td>
<td>668</td>
<td>Thal 400/progression</td>
<td>+</td>
<td>NS (+ in high-risk)</td>
</tr>
<tr>
<td>Lokhorst/2010*</td>
<td>550</td>
<td>Thal 50/ progression</td>
<td>+</td>
<td>NS</td>
</tr>
<tr>
<td>Stewart/2010</td>
<td>325</td>
<td>Thal 200 + pred vs obs/48 months</td>
<td>+</td>
<td>NS</td>
</tr>
<tr>
<td>Morgan/2011*</td>
<td>--</td>
<td>Thal 100/progression</td>
<td>+</td>
<td>+ (if optimal relapse Rx)</td>
</tr>
</tbody>
</table>

*Thalidomide also given as part of induction therapy
Results of MY-10

Progression Free Survival by Therapy

- Median PFS 28 vs 17 mos
- HR = 1.81 (95% CI 1.39-2.36)

- (p<0.0001)

Overall Survival by Therapy

- Median OS NYR vs 5 yrs
- HR = 1.29 (95% CI 0.89-1.88)

- (p = 0.18)

However, QOL compromised:

- **Physical:** 34% vs. 21% worsened

- (p=0.03)

- **Role:** 29% vs. 17%

- (p=0.04)

- **Cognitive:** 54% vs. 41%

- (p=0.01)

- **Global:** 40% vs. 26%

- (p=0.01)

Issues with tolerability

- **Median time to thal dose reduction:** 3.4 months

- **Median duration thal:** 16.1 months
MRC Myeloma IX Study: Phase III Trial

Induction randomization

- Older, less fit N=856
 - MP
 - CTDa
- Younger, fitter N=1114
 - CTD
 - C-VAD
 - HDM 200 mg/m²

Maintenance randomization

- 820 patients
- Thalidomide 50 mg/day increasing to 100 mg/day after 4 weeks if well tolerated
- No maintenance

- Factorial design
- Primary outcome measures: PFS and OS (determined using Cox model)
 - PFS and OS measured from maintenance randomization

CTD, cyclophosphamide + thalidomide + dexamethasone; CTDa, CTD attenuated (low-intensity); C-VAD, vincristine + doxorubicin + dexamethasone + cyclophosphamide; HDM, high-dose melphalan; MP, melphalan + prednisone.

MRC IX Trial Intensive Arm

PFS
- Thalidomide: median 30 months
- No thalidomide: median 23 months
- HR 1.42 (95% CI 1.22-1.73) (p<0.001)

Overall Survival
- Thalidomide: 3-year survival 75%
- No thalidomide: 3-year survival 80%
- $P=0.26$

Phase III Trial: Bortezomib Consolidation vs Observation following ASCT

Nordic Myeloma Study Group (n=370)

Bortezomib consolidation (21 weeks: 2 cycles twice weekly + 4 cycles once weekly) vs **observation** starting 3 mos post-ASCT

<table>
<thead>
<tr>
<th></th>
<th>Bortezomib (n=168)</th>
<th>Observation (n=162)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-ASCT<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/nCR (%)</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>≥VGPR (%)</td>
<td>39</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Post-consolidation<sup>2</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥VGPR (%)</td>
<td>70</td>
<td>58</td>
<td>0.01</td>
</tr>
<tr>
<td>Median PFS, months</td>
<td>27</td>
<td>20</td>
<td>0.02</td>
</tr>
<tr>
<td>Overall survival, 2 yr (%)</td>
<td>90</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>

Grade 3/4 adverse events: Neutropenia 22%, thrombocytopenia 9%, neurologic pain 5%, sensory neuropathy 3%¹

Primary end-point: time to relapse
Secondary end-points: CR rate, PFS, OS, feasibility of long-term lenalidomide

CALGB 100104: Study Design

Registration

< 70 years
≥ 2 cycles of Rx
≥ stable MM
≤ 6 months post-ASCT
< 1 year from Rx start
2 x 10^6 CD34 cells/kg

Restaging at day 90-100

ASCT with MEL 200 mg/m²

CR
PR
SD

Randomization

Lenalidomide
10 mg/day until progression

Placebo until progression

Stratified by:
β₂-microglobulin
IMiD during induction

McCarthy PL, et al. ASCO 2010; abstract #8017.
Summary of Phase III Trials of Lenalidomide Maintenance after ASCT

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>N</th>
<th>Pre-ASCT Induction</th>
<th># ASCT</th>
<th>PFS/TTP</th>
<th>Overall Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attal/2010 (IFM 2005-02)</td>
<td>614</td>
<td>VAD or BD</td>
<td>1 or 2</td>
<td>42 Lenalidomide Observation</td>
<td>60%* 81%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+ len x 2 mos)*</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCarthy/2010 (CALBG 100104)</td>
<td>568</td>
<td>Lenalidomide 32% Bortezomib 42% Thalidomide 16%</td>
<td>1</td>
<td>42.3 Lenalidomide Observation</td>
<td>~50%* 80%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Lenalidomide consolidation x 2 months in all patients

Attal M, et al. ASCO 2010; abstract #8018; McCarthy PL, et al. ASCO 2010; abstract #8017.
Lenalidomide Maintenance

Effect on PFS

CALGB100104

Progression Free Survival (PFS)

IFM 2005-01

Event Free Survival (EFS)

Attal M, et al. ASCO 2010; abstract #8018.
Lenalidomide Maintenance

Effect on Overall Survival

CALGB 100104

Median follow-up of 28 mos. \(P=0.018 \)

23 deaths in the lenalidomide arm and 39 deaths in the placebo arm

IMF 2005-02

No significant difference

Attal M, et al. ASCO 2010; abstract #8018.
Significant Toxicity with Lenalidomide Maintenance Phase III Trials

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>IMF 2005-02</th>
<th></th>
<th>CALGB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Len</td>
<td>Placebo</td>
<td>Len</td>
<td>Placebo</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>43%</td>
<td>14%</td>
<td>43%</td>
<td>9%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>12%</td>
<td>6%</td>
<td>13%</td>
<td>4%</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>2%</td>
<td>0.1%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Documented Infection</td>
<td>10%</td>
<td>4%</td>
<td>16%</td>
<td>5%</td>
</tr>
<tr>
<td>Discontinuation of lenalidomide</td>
<td>6%</td>
<td>4%</td>
<td>13%</td>
<td>2%</td>
</tr>
<tr>
<td>2° malignancy</td>
<td>N=23 (6.8%)</td>
<td>N=6 (1.6%)</td>
<td>N=18 (6.5%)</td>
<td>N=4 (2.6%)</td>
</tr>
</tbody>
</table>

Attal M, et al. ASCO 2010; abstract #8018; McCarthy PL, et al. ASCO 2010; abstract #8017; Attal M, personal communications; IMWG Feb 2011.
Secondary Cancers with Lenalidomide
Maintenance: Considerations

- Small increase in incidence, but.....
 - IFM study included skin cancers
 - CALGB study had several cases even before starting drug
- EMA released statement in Sept 2011
 - “The benefit-risk balance for lenalidomide remains positive within its approved patient population but advises doctors of the risk of new cancers as a result of treatment with the medicine”
 - 3.98 new cancers per every 100 patient-years with lenalidomide compared with 1.38 cases without lenalidomide in the approved population
 - Risk of secondary cancers was increased four-fold with the use of lenalidomide in newly diagnosed individuals
- Other factors likely contribute to these observations

Increased risk appears intrinsic to plasma cell disorders

Higher risk of MDS/AML and non-melanoma skin cancer in patients with myeloma and MGUS

Leukemogenic potential of conventional therapy

- Alkylating agents
 - Latency 5-10 years
 - Often with loss of all/part of chromosomes 5 and/or 7
- Topoisomerase II inhibitors (doxorubicin, etoposide)
 - Latency 1-5 years.
 - Often with translocation of 11q23.
- Concomitant XRT increases risk

Potential contribution of high-dose therapy + ASCT

- Low incidence MDS/AML with VAD induction and ASCT

FISH studies in Hodgkin’s and non-Hodgkin’s lymphoma indicate MDS changes present before ASCT in most cases

MDS-Associated Cytogenetic Abnormalities (CA) after High-Dose Melphalan and ASCT for Myeloma

- 105/3077 developed MDS CA
 - Transient in 72
 - MDS in 21; AML in 5
- Predictors
 - Age
 - Lower CD34+ cell yields
- Predictors for TT2 and TT3
 - Early onset MDS CA— longer time from dx and lower platelet count before ASCT
 - Late onset MDS CA— post-ASCT consolidation chemotherapy
 - No effect of thalidomide

Secondary Malignancies

Potential Factors

- Possible relationship to immunomodulatory effects of lenalidomide:
 - *Meta-analysis of 74 RCTs of anti-TNFα monoclonal antibody therapy showed relative risk of 2.09 for non-melanoma skin cancers and 0.99 for all other cancers*\(^1\)
 - *Risk of skin cancers and lymphoma is higher in organ transplant recipients*\(^2\)

- Updated analyses of secondary cancers in myeloma patients treated with ASCT, IMiDs and bortezomib--ASH 2011 abstracts #’s 678, 823, 996, 2933, 4087

Maintenance Therapy in Myeloma

Summary and Conclusions

- Maintenance with novel agents improves PFS
 - Toxicity issues are critical, particularly with thalidomide
 - PFS is 3½ years with lenalidomide maintenance
- Overall survival is significantly longer in some trials of:
 - Thalidomide maintenance
 - Lenalidomide maintenance
 - Bortezomib in induction and maintenance
- Consolidation improves responses and is under further evaluation
- Our current PMH policy: lenalidomide maintenance
- Post-ASCT therapy decisions will be influenced by:
 - Better understanding of 2o cancers
 - Outcome of subsequent therapy for myeloma progression
 - Identification of subgroups most likely to benefit
Putting it all together......

Phase III ASCT Trials: Best Reported Responses/Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Induction Rx</th>
<th>ASCT + Maintenance</th>
<th>≥ VGPR (CR+nCR) (%)</th>
<th>PFS (Median)</th>
<th>OS (Median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokhorst(^1)</td>
<td>TAD</td>
<td>1 + thalidomide maintenance</td>
<td>66% (31%)</td>
<td>34 mos</td>
<td>73 mo</td>
</tr>
<tr>
<td>Harousseau(^2)</td>
<td>Bortezomib + Dex</td>
<td>1 or 2 (lenalidomide maintenance in some)</td>
<td>68% (39%)</td>
<td>36 mo</td>
<td>NYR 81% (3-year)</td>
</tr>
<tr>
<td>Cavo(^3)</td>
<td>VTD</td>
<td>2 + VTD consolidation + dex maintenance</td>
<td>89% (71%)</td>
<td>NYR</td>
<td>NYR</td>
</tr>
<tr>
<td>Sonneveld(^4)</td>
<td>PAD</td>
<td>1 or 2 + bortezomib maintenance</td>
<td>75% (50%)</td>
<td>~34 mos</td>
<td>NYR</td>
</tr>
</tbody>
</table>

Rosinol L, et al. PETHEMA update, ASH 2011 abstract #3962
Putting it all together........

- Phase II trial IFM 2008 (n=31)

VRD X 3 → Mel 200 + ASCT → VRD X 2 → Len X 1 yr

Initial results

<table>
<thead>
<tr>
<th>Response after</th>
<th>≥ PR</th>
<th>≥VGPR</th>
<th>CR/sCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction</td>
<td>97%</td>
<td>54%</td>
<td>28%</td>
</tr>
<tr>
<td>ASCT</td>
<td>94%</td>
<td>68%</td>
<td>35%</td>
</tr>
<tr>
<td>Consolidation</td>
<td>94%</td>
<td>89%</td>
<td>52%</td>
</tr>
</tbody>
</table>

Update: ASH 2011 abstract #1872

Results of Trials of ASCT In Myeloma

Subset Analysis of Patients with t(4;14)

<table>
<thead>
<tr>
<th>Study/Year</th>
<th>N</th>
<th>Induction</th>
<th># ASCT</th>
<th>Consolidation</th>
<th>Maintenance</th>
<th>PFS (months)</th>
<th>Overall Survival (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chang 2004</td>
<td>16</td>
<td>VAD or dex</td>
<td>1</td>
<td>--</td>
<td>+/- thal</td>
<td>9.9</td>
<td>18.8</td>
</tr>
<tr>
<td>Moreau 2007</td>
<td>100</td>
<td>VAD</td>
<td>2</td>
<td>--</td>
<td>+/- thal</td>
<td>21</td>
<td>41.4</td>
</tr>
<tr>
<td>Avet-Loiseau 2010</td>
<td>106</td>
<td>BD</td>
<td>1 or 2</td>
<td>+/- len ~ 30%</td>
<td>+/- len</td>
<td>28</td>
<td>63% (4 yrs)</td>
</tr>
<tr>
<td>Cavo 2010</td>
<td>110*</td>
<td>VTD</td>
<td>2</td>
<td>VTD</td>
<td>Dex</td>
<td>69% (3yr)</td>
<td>NA</td>
</tr>
<tr>
<td>Neben 2011</td>
<td>[26]</td>
<td>PAD</td>
<td>2</td>
<td>--</td>
<td>Bortezombib</td>
<td>25</td>
<td>66% (3 yrs)</td>
</tr>
<tr>
<td>Reece 2011</td>
<td>32</td>
<td>DBd</td>
<td>0</td>
<td>CyBorD x 8</td>
<td>Weekly dex</td>
<td>~24</td>
<td>~75% (2 yrs)</td>
</tr>
</tbody>
</table>

ASCT in Myeloma
Del17p (p53 deletion)

Total Therapy 2 vs 3¹

HOVON 65/GMMG-HD4²

Integration of novel agents with ASCT improves outcome
 - Benefit when added to induction, consolidation, maintenance

Improved response rates after newer frontline regimens
 - ≥ VGPR rates 65-89%; CR/nCR rates 31-71%

Median PFS has improved from 2 to 3 years
 - 3 ½ years with lenalidomide maintenance

Other strategies to optimize ASCT are ongoing
Overall survival benefit with novel agents harder to demonstrate, BUT significant advantage seen in 2 trials
- **HOVON 65/GMMG-HD4 trial -- bortezomib before/after ASCT**
- **CALGB 100104 trial -- lenalidomide maintenance**

Future decisions regarding maintenance/consolidation will likely be influenced by
- *Incidence of toxicities such as 2º malignancies*
- *Outcome after myeloma progression*
- *Subgroup analysis*
- *Better methods to assess MRD*