Phase II: Carfilzomib, Lenalidomide, and Dexamethasone in Newly Diagnosed Multiple Myeloma

Neha Korde, MD, Clinical Investigator
Ola Landgren, MD PhD, Principal Investigator
Multiple Myeloma Section, NCI/NIH, Bethesda, Maryland
ASH December 10, 2012 (abstract # 732)
Measures of tumor burden

Yesterday: CR
Today: MRD
Tomorrow: ???

Tools:
- SPEP
- IFE
- Flow Cytometry
- CD19 PE
- Functional Imaging
- Molecular Profiling Assays
Study Design and Dosing

Phase II study open for newly diagnosed multiple myeloma pts ≥18 years old

8 cycles CRd Combination Therapy
- Carfilzomib 20/36 mg/m²,
 day 1, 2, 8, 9, 15, 16
- Lenalidomide 25 mg/day,
 day 1-21
- Dexamethasone 20/10 mg
 day 1, 2, 8, 9, 15, 16, 22, 23

12 cycles Rev Extended Dosing
- Lenalidomide 10 mg/day,
 day 1-21

• Each cycle is 28 days
• Stem cell harvest after ≥4 cycles of CRd for patients <70-75 yrs
• C1D1/2 – Carfilzomib dose is 20 mg/m²
• C1- 4 – Dex dose is 20 mg, C5- 8 – Dex dose is 10 mg
<table>
<thead>
<tr>
<th>CRd in Newly Diagnosed MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I/II, n=53</td>
</tr>
<tr>
<td>Phase II, n=45</td>
</tr>
<tr>
<td>Combination Therapy</td>
</tr>
<tr>
<td>• CRd (Phase II Cfz 20/36 mg/m²) 8 cycles</td>
</tr>
<tr>
<td>Extended dosing</td>
</tr>
</tbody>
</table>
| • CRd (CFZ every other week) 16 cycles
• Off protocol Rev 25 mg D1-21 after 16 cycles | • Rev 10 mg D1-21 12 cycles |
| **Transplant** |
| • > PR stem cell collection
• HDM optional | • Stem cell collection |
| **Correlatives** |
| • Flow cytometry – MRD | • Flow cytometry – MRD (3-4 x 10⁶)
• PET-CT
• Proteasome assays
• GEP
• Whole genome sequencing |

* Jakubowiak A. et al., Blood, 2012; 120(9): 1801-8
Objectives of Study

Primary Objective
≥ Grade 3 neuropathy

Secondary Objectives
- Correlatives: GEP, biomarkers, proteasomes, flow cytometry, PCR, FDG PET-CT
- Clinical: response rate, PFS, OS, DOR

Designed to enroll 45 patients
• Phase II study, two stage-design:
 • Stage I: Patients 1-20 - If 4 or more develop ≥ grade 3 neuropathy, then study stops
 • Stage II: Patients 21-45
Blood and urine collected baseline, C1 D8, C1 C15, and day 1 of every cycle
Bone Marrow Studies

- Flow Cytometry
- DNA/RNA profiling
- Proteasomes
- PCR assays DNA/RNA
- Microenvironment studies
- Biomarkers, e.g. miRNA

Bone marrow aspirate
- CD138+
- CD138-
- Supernatant
Patient Characteristics and Time on Therapy

<table>
<thead>
<tr>
<th>Variable</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients enrolled (Dec -12)</td>
<td>28</td>
</tr>
<tr>
<td>Patients completed two cycles (evaluable)</td>
<td>20</td>
</tr>
<tr>
<td>Median age, yrs (range)</td>
<td>60 (42-83)</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Isotype, n (%)</td>
<td></td>
</tr>
<tr>
<td>* IgG</td>
<td>11 (55)</td>
</tr>
<tr>
<td>* IgA</td>
<td>5 (25)</td>
</tr>
<tr>
<td>* Kappa</td>
<td>4 (20)</td>
</tr>
<tr>
<td>Cytogenetics, n/N (%)*</td>
<td></td>
</tr>
<tr>
<td>Hyperdiploid</td>
<td>4/18 (22)</td>
</tr>
<tr>
<td>Del 13</td>
<td>1/18 (6)</td>
</tr>
<tr>
<td>Normal</td>
<td>13/18 (72)</td>
</tr>
<tr>
<td>FISH, n/N (%)**</td>
<td></td>
</tr>
<tr>
<td>- RB1 deletion (13q14)</td>
<td>10/16 (63)</td>
</tr>
<tr>
<td>- 7q31/7cen</td>
<td>7/16 (44)</td>
</tr>
<tr>
<td>- IGH (14q32)</td>
<td>4/16 (25)</td>
</tr>
<tr>
<td>- P53 (17p13.1)</td>
<td>5/12 (42)</td>
</tr>
<tr>
<td>Median (range) cycles of CRd-R received</td>
<td>7 cycles (2-15)</td>
</tr>
<tr>
<td>Patients completed 8 cycles of CRd</td>
<td>8</td>
</tr>
</tbody>
</table>

* Cytogenetics not available for 2 patients
** FISH not available for 4 patients (-RB1 deletion, -7q31/7cen, -IGH rearrangement) and 6 patients (-p53 deletion)
Primary Objective

- In the first 20 patients, no patients have developed \geq grade 3 neuropathy

- Second stage accrual has begun
Response Rates and Mean M-protein Concentration (g/dL)

≥VGPR (n/N): 10/20 16/18 13/14 7/8

<table>
<thead>
<tr>
<th>Cycles of CRd delivered</th>
<th>Baseline</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n(%)</td>
<td>sCR</td>
<td>nCR</td>
<td>VGPR</td>
<td>PR</td>
<td>SD</td>
</tr>
<tr>
<td>1(5)</td>
<td>9(45)</td>
<td>6(33.3)</td>
<td>5(35.7)</td>
<td>4(50)</td>
<td></td>
</tr>
<tr>
<td>4(20)</td>
<td>5(25)</td>
<td>6(33.3)</td>
<td>5(35.7)</td>
<td>4(50)</td>
<td></td>
</tr>
<tr>
<td>1(5)</td>
<td>1(5)</td>
<td>1(5.5)</td>
<td>1(7.1)</td>
<td>1(12.5)</td>
<td></td>
</tr>
<tr>
<td>1(5.5)</td>
<td>1(5.5)</td>
<td>2(14.3)</td>
<td>2(12.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(12.5)</td>
<td>1(12.5)</td>
<td>1(12.5)</td>
<td>1(12.5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Response Rates

<table>
<thead>
<tr>
<th>Response</th>
<th>2 cycles n/N(%)</th>
<th>8 cycles n/N(%)</th>
<th>*Best response n/N(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (≥PR)</td>
<td>19/20(95)</td>
<td>7/8(87.5)</td>
<td>19/20(95)</td>
</tr>
<tr>
<td>≥VGPR</td>
<td>10/20(50)</td>
<td>7/8(87.5)</td>
<td>17/20(85)</td>
</tr>
<tr>
<td>nCR/sCR</td>
<td>5/20(25)</td>
<td>6/8(75)</td>
<td>15/20(75)</td>
</tr>
<tr>
<td>VGPR</td>
<td>5/20(25)</td>
<td>1/8(12.5)</td>
<td>2/20(20)</td>
</tr>
<tr>
<td>PR</td>
<td>9/20(45)</td>
<td>0</td>
<td>2/20(10)</td>
</tr>
<tr>
<td>SD</td>
<td>1/20(5)</td>
<td>1/8(12.5)</td>
<td>1/20(5)</td>
</tr>
</tbody>
</table>

* Median 7 cycles of CRd-R

- Response rates based on FISH/cytogenetics are non-differential
Individual Response Rates

- Median time to sCR: 4.5 cycles (range: 2-7)
- 7 patients currently on rev extended dosing
- 1 patient (patient 8) came off study after 8 combination cycles of CRd due to personal reasons – maintains sCR 6 months after stopping therapy
- 1 patient (patient 2) had PD by biochemical progression
Toxicity

<table>
<thead>
<tr>
<th>Nonhematologic</th>
<th>Grade 3/4, n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFT elevation</td>
<td>4(20)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3(15)</td>
</tr>
<tr>
<td>Rash/Pruritus</td>
<td>3(15)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>2(10)</td>
</tr>
<tr>
<td>Heart Failure</td>
<td>2(10)</td>
</tr>
<tr>
<td>Constitutional (chills, fever, anorexia, hot flashes)</td>
<td>1(5)</td>
</tr>
<tr>
<td>Mood alterations (anxiety, cognition, confusion, insomnia)</td>
<td>1(5)</td>
</tr>
<tr>
<td>Electrolyte disturbances</td>
<td>1(5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematologic</th>
<th>Grade 3/4, n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphopenia</td>
<td>12(60)</td>
</tr>
<tr>
<td>Anemia</td>
<td>1(5)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>0</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
</tr>
</tbody>
</table>

Dose Reductions on 7 patients
4 decreased Dex for fatigue/anxiety/dyspnea, 2 decreased Len for fatigue, 3 decreased Len for rash, 2 decreased carfilzomib for dyspnea/heart failure
Individual Patient Responses
Histopathology Patients 7 and 8

Pt #7: 83 y/o Caucasian female: 70-80% PCs on bone marrow, M-spike 3.1 g/dL

Pt #8: 42 y/o African male: 70-80% PCs on bone marrow and K/L ratio of 322.35

Baseline CD 138+ IHC

Post CRd CD 138+ IHC

nCR after 8 cycles

sCR after 6 cycles

Provided by Irina Maric and Katherine Calvo
Assessing MRD by Flow Cytometry

- Analyze 3-4 x 10^6 bone marrow cells

8-color flow panel*
- CD38
- CD138
- CD19
- CD20
- CD56
- CD45
- CD27
- CD28

MRD negative: ≤20 abnormal plasma cells detected

*European Myeloma Network Gating Criteria
MRD Status after CRd therapy

Flow cytometry

Among 10 nCR/sCR patients assessed by flow, all 10 are MRD negative

Patient #7
Pre CRd: Abnormal PC’s CD19-, CD45 dim, CD56dim+

Post CRd: Normal PC’s CD19+, normal CD45, CD56-
FDG PET-CT in nCR/sCR patients

Mean SUV Decline in FDG avid lytic lesions after CRd therapy: 49.3% decrease

L Acetabular Lesion
SUV 10
At MM diagnosis
sCR obtained

Mean SUV

At MM diagnosis
At nCR/sCR
Proteasome subunits

- Carfilzomib
 - 1° targets β_5 and LMP7
 - 2° targets LMP2 and MECL1

Proteasome activity assay (Pro-CISE)

- 20S CT-L Proteasome activity decreases by 80% 24 hrs after carfilzomib exposure
- Patient obtains sCR after 6 cycles

<table>
<thead>
<tr>
<th>Proteasome Level</th>
<th>β5 (ng/ug of protein) (% total 20S)</th>
<th>LMP7 (ng/ug of protein) (% total 20S)</th>
<th>Total 20S CT-L (ng/ug of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>At MM diagnosis</td>
<td>0.62 ± 0.14 (7%)</td>
<td>8.74 ± 0.98 (93%)</td>
<td>9.36 ± 0.6</td>
</tr>
<tr>
<td>After 1 dose CFZ</td>
<td>0.00</td>
<td>1.84 ± 0.15</td>
<td>1.84 ± 0.15</td>
</tr>
</tbody>
</table>

Provided by Adriana Zingone
Proteasome Gene Expression
Pre and post carfilzomib exposure

- Post carfilzomib exposure shows increase in proteasome gene expression

Provided by Peter Wu
Summary and Conclusions

- Among first 20 patients, none developed \(\geq \) grade 3 neuropathy; limited severe toxicities

- Rapid and deep responses; median time to sCR: 4.5 cycles (range: 2-7)

- Best response rate (median 7 cycles)
 - nCR/sCR = 75%
 - ORR (PR or better) = 95%
Summary and Conclusions

- Among 10 nCR/sCR patients assessed by flow cytometry, all were MRD negative

- Abnormal mean SUV uptake (6 pts) by PET/CT, decreased by 49.3% after CRd therapy

- Pre/post (24 hours) exposure to carfilzomib shows 80% inhibition of proteasome (20s CT-L) activity in MM cells; proteasome GEP increased
Labs and collaborators

NCI/NIH
Multiple myeloma Section
Metabolism Branch
 • Dr. Landgren
 • Dr. Roschewski
 • Dr. Manasanch
 • Dr. Flanders
 • Dr. Kwok
 • Dr. Zingone
 • Mr. Costello
 • RN Mulquin
 • RN Zuchlinski
 • Peter Wu

NIH Labs
 • Dr. Staudt - Molecular pathogenesis and targeted therapy
 • Dr. Choyke, Lindenberg, Kurtziel - Molecular imaging program
 • Seth Steinberg - Statistics
 • Drs. Maric, Calvo, Braylan – Hematopathology
 • Dr. Arthur – Cytogenetics and FISH
 • Drs. Stetler-Stevenson, Yuan, Tembhare - Flow cytometry
 • Dr. Raffeld – Molecular pathology
 • Dr. Trepel - Pharmacodynamic assay development
 • Dr. Annunziata - Molecular therapy
 • Dr. Mock - Molecular therapy
 • Dr. Robey - Bone marrow microenvironment
 • Dr. Kuehl - Molecular pathogenesis

Navy/Walter Reed Medical Center
Mayo Clinic
Dana-Farber Cancer Institute
Karolinska Institute
Signal Genetics
Thank you to our patients!

www.multiplemyeloma.cancer.gov

Neha Korde, M.D., Clinical Investigator
Ola Landgren, MD PhD, Principal Investigator
Multiple Myeloma Section, Metabolism Branch
National Cancer Institute, National Institutes of Health

neha.korde@nih.gov
Future Directions

• With more effective therapies, we need better markers to assess residual tumor burden beyond “traditional” CR rates